

National Geospatial Data Repository Centralised or Distributed?

Dr. Aniruddha Roy

Vice President Navayuga New Delhi, INDIA

Presentation Overview

- NGDR Prespective
- NGDR Stakeholders
- Boundary Consistency in Spatial Data
- Centralised Data System
- Distributed Data System
- Hybrid Data System
- Observations

NGDI - Perspective

NGDI - Stakeholders

- Survey of India
- Geological Survey of India
- CGWB
- IMD
- NRSC
- RGI (Census)
- CWC
- NBSS & LUP
- NATMO
- FSI
 -

Vertical Data Composition

• GIS contains many layers superimposes with same spatial extent

- Base Map Data
- Elevation
- Surface Geology

Boundary Issues

NAVAYUGA

Data inconsistency with base maps even if organizations follow same standards w.r.t

- Scale
- Projection
- Accuracy
- Content
- Format

Data Consistency with Base Maps

- Survey of India, Toposheets are taken as base map
- Practice is prevalent for all scale of maps
- The administrative boundary mismatch
- Lead to wrong decision process for the Boundary areas
- Mandate may be provided for the Quality checks before data loading in the servers

Role of DBMS - Traditional

Integration within the Spatial Database

Popular RDBMS – Spatial Data Types

Name	Spatial Extension	
Oracle	Oracle Spatial	
Sql Server	Sql Server Spatial	
Postgre SQL	Post GIS	
DB2	DB2 Spatial Extender	
Informix	Informix Spatial DataBlade	
Sybase	Sybase Spatial	

GIS Gateway to DBMS

SI.No.	Name	Spatial Data Connector	Supported Database
1	ESRI	SDE	Oracle, Informix, DB2, Postgre SQL, SQL Server
2	Autodesk	FDO	Oracle, SQL Server, ARCSDE, MySQL, ESRI SHP
3	SuperMap	SDX+	Oracle, SQL Server, DB2, Postgre SQL
4	MapInfo	MapXtreme	Oracle, Informix, DB2
5	Geomedia	GeoMedia WebMap 2013 (Inbuilt)	Oracle Spatial, SQL Server, MS Access
6	Bentley		Oracle, SQL Server (ODBC Connectivity)

Industry Perspective- GIS Data

- Storage of vector, raster and descriptive data
- Management using standard means of present day database technology
- Seamless map
- Multi-user access to data
- Transactional processing
- Data security
- Integration with third parties' products at data level

Industry Perspective- GIS Data

- GIS data is becoming more distributed not more centralized
- GIS logic needs to be more distributed

not connected to either a single database or a single server.

Challenge is to use Multiple Technologies and achieve interoperability without loss of data

Data Producers and Consumers

Centralised Vs Distributed

Centralised

Distributed

Centralised Vs Distributed

- **Centralized database** : Database located and maintained in one location. One main advantage is that all data is located in one place. The disadvantage is that bottlenecks may occur.
- **Distributed database** : Database in which storage devices are not all attached to a common processing unit such as the CPU.

Data Publication/Subscription Model

NAVAYUGA

Data flows securely, automatically and in real time from Publisher to Subscriber

Supported Data Sharing Models

Hybrid Model

Concluding Points

- **Repository** commonly refers to a location for storage, often for safety or preservation
- Data Consistency is important for GIS
- NGDR Data Access, Storage, Management and Dissemination
- Mechanism for Repository should be hybrid in nature
- Physical security + Network Security
- DC and DR in two separate Power Supply zones other than different seismic zones

Thank You

aroy@navayuga.com